More than a hundred years ago, Rudolf Virchow published his inhibition theory of arteriosclerosis pathogenesis. Since the release of his publication, continuous worldwide medical research has been conducted. However, no major breakthroughs in cardiovascular disease prevention or cures have been achieved. In fact, the incidence of heart attacks and strokes has significantly increased over the past 70 years. The prominent Nobel Prize winner in physics, Dirák, made the following statement: “In science, if after a certain time no progress is achieved, one should reexamine the premises.”

The German physician Lothar Wendt, internist and professor of medicine at the University of Frankfurt, researched arteriosclerosis and hypertension throughout his medical career. Dr. Wendt revealed his findings in his book, Eiweissfasten (Protein Fasting), in which he elaborates on three false premises of the traditional scientific approach towards arteriosclerosis. Before success in prevention and medical treatment can evolve from this research the three false premises Dr. Wendt identified, must be corrected.

The first false premise: Evidence of this philosophical error is recorded in Aristotle’s modes of explanation related to biology as far back as 500 B.C. During that time, medicine was challenged with this basic question: Is biology ruled by classical or teleological physics? (Teleology is the study of the evidence of design or purpose in nature.) Although teleological physics is superior when applied to biology, the classic causal physics has been used for the past 100 years.

The second false premise: The reason for heart attacks is over-consumption of animal fats; a theory taught in all medical schools. The World Health Organization and other institutions have published statistics that demonstrate an increase up to 1,000 percent in animal protein consumption from 1934 to 1978.
On the other hand, fat consumption remained constant during that period and is presently declining. At the same time, the consumption of potatoes and grain products decreased nearly 50 percent. **There is an obvious statistical correlation between increased heart attacks and increased animal protein consumption.**

The third false premise: Popular nutritional science and physiology teach that mammals have no capacity to store protein and excess will be completely metabolized and excreted (S.M. Rapoport, 1969). Medical science also teaches that humans will stay healthy even if their diet solely contains meat (A. Glatzel, 1976).

Professor Wendt proved this teaching in nutritional science and medicine to be innacurate. The following explanation and graphics from his book Eiweissfasten (published by Haug - Heidelberg third edition 1989) summarize his research and revolutionary findings. He clearly demonstrated that over-eating will not only increase fat cells in the connective tissue, but also in protein fibers. Fat cell increase during periods of over-eating and their decrease during fasting is scientifically understood. The same mechanism of storage and decomposition also takes place with collagen fibers (protein), although this is overlooked.
Medical science teaches humans don’t have protein storage capabilities. This illogical statement has obviously led to the acceptance of an error for which correction should no longer be ignored. The tissue samples in the following graphics clearly demonstrate that subcutaneous connective tissue stores both fat and protein. It is therefore necessary for the modern medical community to rethink the transport and storage of all nutritive substances, particularly protein.

The physiology of nutrient storage in healthy people

Subcutaneous connective tissue in healthy people

Fat storage in subcutaneous connective tissue.

Protein storage in collagen in subcutaneous connective tissue.
With excess protein consumption, protein fibers are deposited in collagen fibers. This leads to thickening of interstitial connective tissue, which is the passageway for nutrients to the cells supplied by the capillary blood. The protein fiber deposits cause obstructions and narrowing of the capillaries; blocking the flow of nutrients. This causes capillary blood thickening and increases the hematocrit level of the blood. The entire capillary blood flow is slowed down. This triggers molecule storage by endothelial cells (the interior cells of the capillary walls). Here, the molecules are converted to collagen and mucopolysaccharides, which are then stored on the capillary basal membrane. This process thins the blood, but renders thicker, tighter capillary walls and pores (see graphics on next page); reducing efficiency.

This obstruction also backflows into the arteries. With excessive backpressure, the endothelial cells of the arteries (located on the intima), also begin storing molecules. This is the beginning of arteriosclerosis. Thickening of the blood increases the risk of hypertension and heart attacks.

All graphics taken from Handbook of Microscopic Anatomy, Publisher Julius Springer, Berlin, 1927.
HYPERTENSION

Hypertension became a mass phenomena and can only be explained by an abnormal development of the body. Our genetic makeup goes back 3.5 million years and doesn’t suit today’s modern lifestyle. Man as hunters/gatherers survived mostly hungry and thirsty through deserts and the average lifespan was around 30 years.

The human biological system is designed for hard labor and survival during deficiencies. Our evolution did not plan for the abundant lifestyle we enjoy today, especially past age 40. Evolutionary Biology/Medicine explains why the body’s elemental regulation of blood pressure works against us today. The feedback mechanism of several hormones, also called Renin-Angiotensin-System (RAS), has sole responsibility to keep blood pressure up to prevent dehydration. Therefore it filters salt
and water from urine, returning it to the blood and, if needed, constricts blood vessels to guarantee pressure.

Throughout history, salt was often hard to come by. On average, humans were fortunate to get two grams of salt daily, while at the same time they lost it via sweat, long marches, and heat. Only with the help of the RAS were they able to survive. Nowadays we consume up to 10 grams of salt per day; nobody needs to be thirsty, and the distance to the next pub or convenience store is not too far. Due to the abundance of our modern lifestyle (food, drink, stress, lack of exercise), coupled with the inability of the RAS to adjust, it becomes over active. Over millions of years, the RAS learned to regulate deficiencies and it will take time before such a complex regulatory system will genetically reprogram itself. The only choice would be to live an ascetic life like in the old days or switch off the Renin-Angiotensin-System via hypertension drugs. There are previously 60 different hypertension drugs available.

Normal blood pressure is considered to be 120 systolic over 80 diastolic. The borderline where treatment is advised begins at 140/90 mm Hg. Due to lack of exercise and obesity, higher blood pressure can already be observed in five percent of children and young adults.
Lifestyle influences

- Losing weight can decrease blood pressure by about -20 mm Hg
- Good nutrition can reduce blood pressure by about -11 mm Hg
- Restricting salt intake can reduce blood pressure by about -6 mm Hg
- Two bottles of beer can increase blood pressure by about 10 mm Hg

Unfortunately, cutting down on salt and changing nutrition has only minor influence on hypertension and can only be one part of a treatment protocol. Alcohol consumption in those with normal blood pressure is not problematic. We need to keep in mind that normal blood pressure of 120/80 mm Hg fluctuates during different activities (see graphic above).

The Three Types of Hypertension

- 80% Essential (primary) Hypertension
- 15% Renal Hypertension
- 5% Pituitary/Adrenal Tumor

Professor Wendt links essential hypertension directly to what he calls “Protein Storage Disease.”

THERAPY

#1 – ANIMAL PROTEIN FASTING

Animal protein fasting is the absence of any animal flesh, eggs and fish from the diet throughout the therapy period. However, this does not mean the patient must commit to a lifetime of vegetarianism. Based on the severity of hypertension, two months of animal protein fasting (or longer in advanced cases) is necessary. After two months, animal protein can be eaten in small amounts but never after 3 p.m.; with two protein-free days per week.

Since Americans consider daily meat consumption part of “a balanced diet,” patient compliance may be difficult initially. Patients should be reassured that the adjustment to a meat-free diet will only take a short period of time. They should also be encouraged to visit vegetarian restaurants where they can enjoy delicious, nutritious meals and health food stores where helpful resources such as cookbooks can be obtained. The healthcare practitioner must
encourage patient compliance and discipline. The significant health improvement and benefits to be realized by the patient, will far exceed any negative feelings toward the therapy.

#2 – BIOLOGICAL MEDICAL SUPPORT

The following suggestions should only be administered under the supervision of a health care professional.

NemaBase to increase alkalinity
During heart attacks and strokes, some localized capillary and connective tissue areas become acidic. NemaBase creates acid-alkaline balance of the terrain. It ionizes instantly and is rapidly available to the cells. This product can also be used in emergencies.

Card-Vasc — Blood pressure reduction; Sambong, a diuretic without depleting electrolytes.

Viscum — Improves cardiac output with a mild reduction in blood pressure.

Aesculus No. 6 — Increases peripheral circulation, strengthens vascular walls, decreases inflammation in the circulatory system.

Crataegus No. 26 — Increases coronary circulation.

Cactus No. 16 — Indications: Heart pain due to stress; angina pectoris; circulatory disturbances with tendency to collapse; nicotine abuse.

#3 - CHELATION

Marcozyme (enteric coated proteolytic enzymes)
If taken one hour before or between meals, it assists in decomposing protein.

Accelerin as a smooth muscle relaxer and decalcifier
The potassium-magnesium in ACCELERIN is 98 percent absorbed by the bloodstream due to its special aspartate bonding, developed by Dr. Ellis and Dr. Schwille.

Kidney Drainage
The use of kidney drainage remedies is essential during any chelation therapy.

Artichoke No. 24 - High Blood Lipid Levels

For more information on these remedies provided by Marco Pharma Intl. please visit marcopharma.com or call (800) 999-3001.

SIGNIFICANCE OF POTASSIUM/MAGNESIUM IN RELATION TO ARTERIOSCLEROSIS
Summary based on clinical research by Professor P.O. Schwille, M.D., Ph.D., Surgical Clinic University Erlangen, West Germany (published 2003).

Dr. Schwille proved the reduction of arterial calcification using magnesium/potassium and alkaline carbonates. The effectiveness of these substances has been confirmed in two animal studies. The three-month oral administration of potassium sodium citrate without magnesium in isolated arteries resulted in a 50 percent reduction of arterial wall calcification in treated subjects as compared to the untreated control group. The use of either sodium citrate or potassium citrate alone was less effective.

An additional study, a special combination of magnesium/potassium citrate and potassium hydrogen/sodium hydrogen carbonate was conducted to determine its effectiveness in reducing calcification of injured arterial walls. The mineral mix dissociated in water, was administered to three groups over a period of three months. At the beginning of the test all participants showed calcification in the media. After three months the untreated group without vascular injuries showed no change, while in the treated group the significant decrease took place. The third treated group, with uninjured arteries, also showed no calcifications.
Histological dissection
The pictures show three layers of the artery walls (from left to right):
- Inner layer (intima)
- Muscle layer (media)
- Outer layer (adventitia)

a) Normal appearance of vascular wall (focus on the structure of the middle section)
b) Strong calcification of the injured middle section of the untreated group (arrow pointing in the direction of the calcified section). Compare to a.
c) The non-calcified middle section, in spite of vascular wall injury. This group was treated with a combination of potassium/magnesium and alkaline carbonates (e.g. NemaBase).

CONCLUSION OF BOTH STUDIES:
Calcification of injured arteries can be inhibited by regular, long-term administration of a combination of magnesium/potassium and alkaline carbonates (e.g. Accelerin, NemaBase). Treatment with potassium sodium citrate, alone, was unsuccessful.

As confirmed by these studies, the effective metabolic alkalizing mechanisms of Accelerin / Nemabase include:

1) Metabolic alkalizing process; increasing concentration of salts in the tissue

2) Provides ample supply of magnesium to reverse possible
magnesium deficiencies

3) Inhibits calcium crystallization of the arterial walls due to magnesium/potassium and alkaline carbonates (e.g. Accelerin, NemaBase).

All remedies mentioned are provided by Marco Pharma International
Contact: (800) 999-3001 www.marcopharma.com

The statements above have not been evaluated by the FDA. The nutritional suggestions and research provided are not intended to diagnose, treat, cure or prevent disease and should not be used as a substitute for sound medical advice.